The story of Ubiquity Robotics

Designing the Future Summit 2019

Ippd Process Development

How many of you love chores?

How many of you would love a machine to help with chores?

Vision

"Let's build a custom robot for XYZ application"

"Isn't it quaint that people used to build custom robots for each application"

Today 2030

The Problem

It takes 2 years and between \$500K-\$5M to put together the foundational things that any general purpose robot needs:

- Mobility Hardware
- Localization
- Navigation
- Compute Infrastructure
- Artificial Intelligence / Perception

Our Solution - Magni

Fully certified robot in production - sold since Aug 2018

Payload: 100kg

Localization & Navigation

Mobility

Power

AI: Object awareness

Compute infrastructure

Warehouse and logistics video

© Copyright 2019, Lean Enterprise Institute, Inc. All rights reserved. © Copyright 2019, Ubiquity Robotics, Inc. All rights reserved.

The markets of interest

The story of Ubiquity Robotics

Background

Tools & Methods

- Step 1: Identify an interesting problem
- Step 2: Build an interesting team
- Step 3: Break the problem down
- Step 4: Create and manage learning cycles
- Step 5: Do it again but more simply

Key learnings

Before robotics I was improving PD lead times

The "Herman Hauser" Challenge

Build a product and bring it to market with no money and no resources

The story of Ubiquity Robotics

Background

Tools & Methods

- Step 1: Identify an interesting problem
- Step 2: Build an interesting team
- Step 3: Break the problem down
- Step 4: Create and manage learning cycles
- Step 5: Do it again but more simply

Key learnings

Step 1: Identify an interesting problem

Ubiquity Robotics Problem Statement

Ultimate Goal

Create a low cost robotics platform with meaningful capability to enable a broad range of applications

Current Situation

Current generic robots are costly -\$1500 for turtle-bot, between \$2-10K for telepresence robots. These robots have limited functionality, with short endurance (45mins for turtle-bot) and small payloads (a few lbs)

Desired Situation

A robot that costs <\$500 to build and thus can be sold for <\$1000 can handle substantial payloads (>50lbs) and can go anywhere in the built environment (anywhere that is ADA compliant) and navigate for several hours.

Problem Statement

How can we build a robot with high endurance, payload, vision and navigation capabilities for \$<500.

The board of seduction

UBIQUITY ROBOTICS

Scopyright 2019, Lean Enterprise institute, inc. All rights reserved. Scopyright 2019, Oblquity Robotics, inc. All rights reserved.

Step 2: Build an interesting team

Recruiting for a "bet the company" innovation initiative

Method A

- -Put out an attractive job advert to get many candidates
- -Winnow down candidates through a selective interview process
- -Offer an attractive compensation package
- -Usher them through the best parts of your campus
- -Require normal levels of administrative duties

Method B

- -Talk only about the tough engineering challenge
- -Be completely non-selective anyone can participate only those who like hard engineering problems stay
- -Offer them no salary only really hard engineering problems
- -Show the candidates the most chaotic corner of your local hacker space
- -Try to eliminate all administrative work "More hacking less yakking"

Some of the people we recruited

- -Compiler Designer
- -Eric Schmitt's former technical lead
- -President of Homebrew Robotics
- -40 Years in technical design

Rohan Agrawal

- -Building robots since age 8. -Featured on multiple national news outlets for robot exploits. -Coding professionally since he
- was 13 years old at Willow Garage, Savioke, OSRF and Google

Alan Federman

- -30 years building robots
- -Physical Sciences PhD
- -Fx-NASA

Bill Preetz

- -Former Lockheed Martin.
- -Attitude control engineer for Hubble.

Fun Fact: Wrote his own variant of the C programming language designed a compiler and then wrote an entire codebase in this new language that no-one else

Fun Fact: Developed new method Fun Fact: built the first video Fun fact: Every system he built for digital transmissions in the VHF conferencing systems on the for Ubiquity robotics he tried age 14.

Web

out in space first

understood © Copyright 2019, Lean Enterprise Institute, Inc. All rights reserved. © Copyright 2019, Ubiquity Robotics, Inc. All rights reserved.

Step 3: Break the problem down

Basic Architecture

To get started go to: www.ubiquityrobots.com

- -> Wiki
- -> Epics for project

Montessori Boxes

Necessary Hardware

Link to wiki-page & Repo

Architecture diagram with area of interest circled

Step 4: Create and manage learning cycles

Knowledge Repository

© Copyright 2019, Lean Enterprise Institute, Inc. All rights reserved. © Copyright 2019, Ubiquity Robotics, Inc. All rights reserved.

Set Based Methods: Localization

	Description	Cost	Local Performance	Long Range Performance
Typical Lidar Based	Use LIDAR sensor + wall matching to localize	~\$1.2K	•	
Low Cost Lidar Based	Use low cost LIDAR sensor + wall matching to localize	\$400	•	
Array Sensor	Build array of low cost sensors use AI to "synthesize" LIDAR like data use wall matching	\$100		
Ceiling Lights	Use ceiling lights like stars to localize	\$25		
Fiducial Markers	Use QR code like fiducial markers to localize	\$25	•	UBIQUITY ROBOTICS

Project Management in Action

- PDCA cycle visible publicly
- Anyone worldwide can add an issue
- Resolution of issues visible to all
- Anyone can take up and resolve any issue
- Incorporation in to build cycle only by Ubiquity Robotics build manager
- Weekly review

Step 5: Do it again but more simply

Iterate

V1

V2

V3

V4

Supplier Reduction

Ubiquity Suppliers by Design Generation

Suppliers essential to core functionality

"Simplify, then add lightness"

Colin Chapman

The story of Ubiquity Robotics

Background

Tools & Methods

- Step 1: Identify an interesting problem
- Step 2: Build an interesting team
- Step 3: Break the problem down
- Step 4: Create and manage learning cycles
- Step 5: Do it again but more simply
- **Key learnings**

Key Learnings

Articulating an interesting problem is more important than gathering resources

Independent challenge is more useful than direction

The best people aren't in it for the money

A proper learning cycle helps you move faster

Simplify and add lightness is a useful mantra

"Practice not-doing and everything will fall into place" - Lao Tzu

Get in Touch!

dc@ubiquityrobotics.com

www.ubiquityrobotics.com

+ 1 415 309 8966

David Crawley

