"Out of the box" innovation with TRIZ Presented By Monica Rossi Designing the Future Summit 2018

© Copyright 2018, Lean Enterprise Institute, Inc. All rights reserved.

About Myself

- Assistant Professor at Politecnico di Milano (2017)
- Post-Doc at Polimi (2015-2016)
- PhD in Industrial Engineering at Polimi (2014)
- MSc on Management Engineering at Polimi
- Exchange in MIT (2013), Tokyo Metropolitan University (2015), Sorbonne UTC (2016), Rutgers (2016)
- My Topics:
 - ✓ Life Cycle Thinking & Lean Thinking Product Life Cycle Management, Lean Product & Process Development, Lean Start-up, Circular Economy, Sustainable Development

Rationale

Organizations want to deliver to their customers innovative and creative solutions. But they are not always successful!

Rationale

Organizations want to deliver to their customers innovative and creative solutions. But they are not always successful!

Designers from any kind of enterprises, often face **technical problems** for which they struggle to find an **effective solution**.

From raw ideas to successful products

Source: G. Stevens and J. Burley, "3000 Raw Ideas = 1 Commercial Success!" Research Technology Management, 40(3): 16-27, May-June, 1997.

Obstacles to innovation

A4 Paper

CD-DVD

Which is the minimum size of a CD player?

#1 - Psychological Inertia

Which is the minimum size of a CD player?

#1 - Psychological Inertia

Problem (Primary School)

Problem (Primary School)

Type of Problem: arithmetic

Model of problem: 50/3

Tool: division

Model of Solution: 16,666...

Problem (Primary School)

Scientific Problem

Specific Solution

Problem (Primary School)

Scientific Problem

Specific Solution

General Model of the Problem

Analysis and Abstraction

Scientific Problem

General Model of the Problem

Analysis and Abstraction

Scientific Problem

General Model of the solution

Problem (Primary School)

Type of Problem: arithmetic

Model of problem: 50/3

Tool: division

Model of Solution: 16,666...

Solution:

16 cherries to each kid

Optimal Solution or Compromise?

#3 – Conflicts and Trade-Offs

Theory of Inventive Problem Solving

Genrich Altshuller (1926-1998)

Analysis of hundreds of thousands inventive solutions

- 99% of inventions use already known solution principle
- Less than 1% are really pioneering inventions
- Breakthrough solutions emerge from resolving contradictions
- Inventors and strong thinkers use patterns
- Creative problem solving patterns are universal
- Creative ideas can be produced in a systematic way

Theory of Inventive Problem Solving

The architecture of TRIZ is based on Three Postulates

- Postulate of Objective Laws of Systems Evolution
- 2. Postulate of Contradiction
- 3. Postulate of Specific Situation

